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Summary

A new parallel numerical scheme for solving incompressible
steady-state flows is presented. The algorithm uses a finite-
difference approach to solving the Navier-Stokes equations.
The algorithms are scalable and expandable. They may be
used with only two processors or with as many processors as
are available. The code is general and expandable. Any size
grid may be used. Four processors of the NASA Lewis
Research Center Hypercluster were used to solve for steady-
state flow in a driven square cavity. The Hypercluster was
configured in a distributed-memory, hypercube-like architec-
ture. By using a 50-by-50 finite-difference solution grid, an
efficiency of 74 percent (a speedup of 2.96) was obtained.

Introduction

Over the years, as thrust-to-weight ratio has increased,
propulsion systems have evolved into very sophisticated
designs, requiring intricate interaction among an enormous
number of complicated components. This complexity is the
result of trying to harness as much power as possible from a
propulsion system of given size and weight.

As thrust-to-weight ratio continues to increase in the future,
the propulsion system designer will have to rely heavily on
high-speed computer simulations. Today, the simulation of a
modern propulsion system on state-of-the-art serial computers
may consume hundreds of hours of execution time to achieve
the level of detail required. Yet, to be of help to the propulsion
system designer, simulation results must be available in a
reasonable amount of time.

Because for many years simulation complexity has been
increasing faster than the mainframe computer speeds capable
of handling it, other techniques have been investigated to
reduce the effective wallclock time to completion. Parallel
processing has gained considerable popularity in the last few
years, and much new commercial hardware is available today.
But the concept of having several computers working in
unison on the same problem has been around for a long time.
For example, during the early 1980's researchers at the NASA
Lewis Research Center demonstrated the feasibility of parallel
processing in engine simulation (refs. I through 5). The
researchers executed a small helicopter engine simulation by
using four processors in unison on a parallel processing system
developed in-house at NASA Lewis (ref. 6).

A characteristic of parallel processing that has become very
apparent today is that hardware is leading the software
available by a considerable amount. Powerful hardware is
commercially available, but the software to harness that
powerful hardware is not. This is particularly apparent in the
area of fluid dynamics. Fluid dynamics problems are generally
very computationally intensive, requiring solutions of systems
of partial differential equations over huge one-, two-, and
three-dimensional grids. One characteristic of these problems
is that they often require solution of block-diagonal systems
over finite-difference grids.

This report discusses techniques for rapidly solving the
steady-state, incompressible Navier-Stokes equations by using
parallel processing and finite-differencing techniques.
Algorithms are presented that are scalable, general, and
portable. The algorithms can be used with as few as two
processors or, for a large enough problem, with as many
processors as are available. Any size problem, within the
limits of the computer's memory, can be solved. Care was



taken to minimize the effects of machine-specific items in
order to ease porting of the code between multiple-input,
multiple-data (MIMD) distributed-memory computers.
Machine-specific items, such as COMMON and vector
processing, are not used in the code. For demonstration
purposes the results that were obtained from applying the
algorithms to three classical fluid dynamics problems are
presented, including solving for the steady-state flow within a
driven square cavity. Finally, a technique for making the
algorithms even faster is discussed.

Algorithm Overview

With the aggressive advances taking place in parallel
processing hardware, new software and algorithms must be
developed to harness this increase in computing capability.
Because of the complicated nature of fluid dynamics problems
many studies are attempting to develop new techniques and
algorithms for taking advantage of parallelism in these compu-
tationally intensive problems. One such technique is the finite-
difference algorithm that was developed by A. Lin for solving
the steady-state incompressible Navier-Stokes equations. This
algorithm, which has the potential to provide a scalable, paral-
lel solution, has been well documented over the past several
years (refs. 7 through 10). For convenience, the key features
of the algorithm are highlighted here. For a formal and
detailed development of these concepts, consult the references.

The steady-state incompressible Navier-Stokes equations can
be written in the dimensionless form:

Let us also choose the following convention. Let X be defined
as the values at the ith iteration level. Let X * be the values at
the (i-1)th iteration level. Hence u is the x-component of velo-
city at the ith iteration level and u * is the x-component of
velocity at the (i-I)th iteration level.

If we define the operators

	

C=u* a +v*a	 (s)
ax	 ay

and

	

L = C - I v2	 (6)
Re

and apply the following second-order quasi-linearization, given
the general term f(x)g(x),

.fg - f *g + g *.f -f *g *	 (7)

Then the system of equations shown in equations (1) through
(3) can be solved iteratively as

AX = r1X*	 (8)

where

K a K a 0
Ox	 ay

Continuity equation:

ux + vy = 0 	 (1)
A = L + itx	 u *	 (9)

Y	 ax

x-momentum equation:

UUX + 
VU  

+ P  = 1 V21,
Re

y-momentum equation:

liv, + vv + p = 1 v 2v	 (3)
X Y	 y Re

where gx = ag/dx, p is the pressure function, u is the
x-component of velocity, v is the y-component of velocity, and
Re is the Reynolds number. This is a nonlinear system of
elliptic partial differential equations that, in general, must be
solved iteratively.

Define X, the vector of variables, as

u

X = v (4)

p

V s	
L + vy
	

a

ay

and

	

0	 0	 0

	

fl = C	 0	 0	 (10)

	

0	 C	 0

where K is a constant with the same units as the velocity. The
continuity equation is multiplied by K in order to bring it to
the same units as the momentum equations to ease eigenvalue
analysis.

The iteration matrix for equation (8) is
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^ = A-] q 	 (11)

All the eigenvalues of i for the continuous problem are
bounded by I for all values of K # 0 when X * is sufficiently
close to X.

Equation (8) can be solved by using the finite-difference
numerical scheme shown in figure 1. Note that the primitive
variables are staggered over the finite-difference grid.
Boundary conditions for the internal flow field are also shown
in the figure. Usually some artificial computational cells are
added by appending two adjacent boundaries (i.e., i = l and
j = 1). This is done to make the application of the algorithm
easier. As shown in the figure, along the left column of cells
appended,

	

(vl,j + v2,j)/2 = vbj	
(12)

where b  denotes the jth boundary value of the y-component of
velocity. Along the bottom row of cells appended,

	

(ui,t + ui,2)/2 = u
bi	 (13)

where bi denotes the ith boundary value of the x-component of
velocity. The pressure is zero within all the cells appended.
The pressure variable does not appear on the boundary be-

cause of the nature of the Navier-Stokes equations, as dis-
cussed in references 9 and 10.

Vm n = Vbm

•	 um,n =ubn
Pm,n = o

^Vbi = (v1 J + V2JY2

V1,i	 / V2 J 	 ViJ
r--f — 	j

•	 u11i = ubi	 •	 ui,i
P1,i —0
	

Pi,i

ui, 2
i
i Vi,1 = Vb i	 ubi = (u i,1 + ui,2)/2

^	 '	 •	 ui,1
Pi,1 =O

'---------^-	 -------- L-------

Figure l.—Variable locations and internal flow boundary conditions,
where p is pressure function, u is x-component of velocity, v is y-
component of velocity, u b is boundary value of x-component of
velocity, and Vb is boundary value of y-component of velocity.

Let us define the grid and flow parameters

	

a= h	 and	 P= 1 1	 (14)

	

k	 Re h

where h is the finite-difference grid spacing in the i- or
x-direction and k is the finite-difference grid spacing in the
j- or y-direction.

A possible finite-difference approximation for the system
given by equation (8) can be expressed as follows: The dis-
crete continuity equation is

(ui , j - u i- 1,j) + a (vi, j - vi,j- 1) = 0	
(15)

And the discrete momentum equations are

hC (ui,J) + ^i+l ,J 	piJ - 0 (lli+1,J - ui- 1J

- 
P a2(u i , j+1 - lli,l

_ l ) + 2 P( 1 + a2)ui,j

	

+ h [(u .
X ^Q
 lti + (tt *) vi = 0	 (16)

and

h  (viJ + a 1'" i,j+1	 pi,j)	 P (vi+l ,j - vi-1,)

^a2 (vi ,j+1	 vi, j- 1) + 20 6 + a2)vi,j

+ h [ ^vj ^ijvij + `vx ^i'jut,j] = 0

where C is the second-order, upwind, finite-difference scheme
of the convection operator C given in equation (5). In evalu-

ating C, the finite difference of the first derivative is taken as
a forward difference if the variable is negative (((x)i = ((^i+t
- ^ i)lh or (( Y)j = (^j+t - (pj)lk) and as a backward difference
if the variable is positive ((^xji = ((^i - (^i-t)lh or
(^j - ^j_ t )lk). This is done to ensure the diagonal dominance
of the system.

Equations (1) through (3) depend on the change in pressure,
not the pressure level itself. Thus the pressure level must be
set. This can be done by enforcing a fixed pressure level in
one of the cells. Although any cell may be chosen, a boundary
or corner cell is generally chosen for convenience (see fig. 1).
Equations (15) through (17) represent a second-order approxi-
mation to the Navier-Stokes equations. They reflect the fact
that the total mass flux through the domain f) is preserved.
The scheme allows for the conservation of mass at each
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computational cell at every iteration level. The conservation of
mass is an important condition of steady-state incompressible
flow and should be maintained.

Parallel Environment and Computation
Scheme

As shall be seen later in this section when the parallel
computation scheme is discussed, the algorithm highlighted
previously lends itself quite nicely to solution in a parallel
environment. The parallel environment chosen for this study
was the Hypercluster, a versatile MIMD parallel processing
testbed that has been developed at NASA Lewis for algorithm
and architecture research (refs. 11 and 12). This section
focuses on describing the Hypercluster architecture and the

parallel computational scheme for solving equation (8).

Hypercluster Architecture

The Hypercluster parallel environment is an experimental
machine that has been specifically designed to perform well on
computational fluid dynamics (CFD) problems. The rationale
behind the design of the Hypercluster testbed evolved from the
complexity of investigating CFD algorithms on parallel and
vector hardware. This rationale is discussed in reference 11. A
four-node Hypercluster consists of four clusters of processors
that are interconnected in a binary n-cube configuration by
internode links. The cluster of processors at a node may con-
sist of any number of scalar and/or vector processors. The
architecture for one such four-node prototype is shown in
figure 2. The links allow communication between nodes and
consist of two control processors (CP's) communicating
through dual-ported memory. It is important to note that the
CP's can route information throughout the Hypercluster with-
out interrupting computation of the current application. Thus,
communication occurs in parallel with computation.

The Hypercluster resembles other hypercube architectures in
many respects but has the following important differences:

(1) Each node of the Hypercluster can consist of more than
one scalar and/or vector processor.

(2) Processors within a node communicate through shared
memory.

(3) Independent CP's perform the intemode communication
without interrupting the processors within a node that are
performing the application computations. These CP's are
programmable, allowing investigation of various message-
passing protocols.

(4) The processor technology within each node is not limited
to any particular vendor. The use of a standard bus allows any

processor board that is available for the bus to be incorporated.
This feature also provides a rapid method for upgrading the
system hardware.

The user interacts with the hardware through a menu-driven
Hypercluster operating system (HYCLOPS), which runs on the
front-end processor. Hypercluster programs are written in For-
tran 77, with library support for parallel and vector processing.
Each processor in the Hypercluster runs a message-passing
kernel that supports interprocessor communication. The kernel
supports distributed-memory communication through simple
"send" and "receive" library calls. Shared-memory communi-
cation is supported through COMMON blocks. Details on the
Hypercluster programming and operating environment can be
found in reference 12.

The Hypercluster provides a versatile environment that
allows experimentation with many different subset archi-
tectures and programming styles. Because of the interest in
distributed-memory systems this mode of Hypercluster opera-
tion was selected for the test cases presented herein.

Parallel Computation Scheme

An ideal application of the numerical scheme just described
is to solve linearized systems iteratively. For any grid point
(Q) the following linear relationship holds:

	

PijXij + Wi,jX1-1,j + Ni jX i.j*1 + Et,jxi.l,j 	 (18)

+ Sf ,jxij-1 = (RHS)t,j

CL communication link
M shared memory
CP control processor
SP scalar processor
VP vector processor

SP	 VP
VP	 VP

SP	 M	 M	 SP
CL

CID

CL M -

CL	 CL

CID	 1*^

SP M 1	

WSP

CL

SP 
CL 

Front-end processor bus

Figure 2.—Two-dimensional Hypercluster configuration.
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where the coefficient matrices P, W, N, E, and S are derived
from the operator A by using the discrete finite-difference
equations (i.e., equation (9) together with equations (15)
through (17)), X is the value of (u, v, p)T at the kth iteration
level, and RHS is a known term that depends on X(t-I), or the
values at the (k-1)th iteration level.

Several parallel iterative methods for solving equation (18)
have been discussed previously (refs. 13 and 14). The iterative
approach that follows, which is called line relaxation, is well
suited for use with distributed-memory MIMD parallel compu-
ters because communication complexity is minimal.

The iteration equation that is considered by the line-
relaxation iterative algorithm is the following block -tridiagonal
system:

A rXr-1 + BrXr + Qr+l = Dr , l :< r :< it	 (19)

This system is obtained from equation (18) by deciding upon
the implicit line, either i or j, moving the off-line terms to the
right-hand side of the equation, and combining them with the
RHS term to form the D term. The parallel algorithm for solv-
ing equation ( 19) is based on a more general approach that is
discussed in reference 15.

The scheme for solving equation (19) is as follows: If q
processors are available to solve the system, split the n equa-
tions into q strips. Accomplish this by identifying q internal
equations, or key equations. Denote by key j the location of
these equations so that 1 < key, < key 2 < ... < key9 < it. For
the remainder of this discussion, the following convention is
used: Denote by the rth strip the set of equations from the
(keyr-l + 1) equation through the (key r, I -1) equation. For com-
pleteness, let keyo = 0 and keyq, I = (n+ 1).

Note that there is now some overlapping of the equations in
the strips. For example, as shown in figure 3, the rth and the
(r-1)th strips have the equations (key r- ,+ 1) through (keyr 1)
in common. Likewise, the rth and the (r+l)th strips have the
equations (key r+l) through (key r+l -I) in common. As ex-
plained in the discussion that follows, the reason for this
overlapping is to get a bloc k-tridiagonal relationship between
X keyi-t , Xkey , and Xkey,,t for each processor i used in the

parallel solution of the problem.
The parallel solution of equation (19) takes place in the

following fashion: Since we have q processors to solve equa-
tion (19), we assign to the rth processor, 1 <_ r <- q, the rth
strip of equations, namely, the equations (key r-1 +1) through
(keyr+ I -1).

For the moment consider the equations on processor 1. The
system of equations is as shown in figure 4. Multiplying the
first equation by A2B, -1 and subtracting from the second equa-
tion, we see that the A2 coefficient in the second equation is
eliminated and the C2 coefficient is left alone. In addition, the
B2 and D,2 coefficients are replaced with the modified coeffi-
cients B2 and D2 . If we repeat the process and multiply this

new second equation by A3 (B2 )-I and subtract from the third
equation, we eliminate the A 3 coefficient and get new values
for the B3 and D3 coefficents. Continue repeating this process

(key,-1) times until coefficient 
Akeyt 

is eliminated.

Now go to the last equation on the processor. Multiply this

equation by Ckey2 -2 Bkey2 -I^ 1 and subtract the result from the

second-last equation. The Ckey2-2 coefficient is eliminated and

the Akey2.2 coefficient is left alone. Coefficient 
Bkey2-2 

is

replaced with a new-valued coefficient, and a new coefficient

Ckey2 -2 - -Ckey2-2(Bkey2-1)-ICkey2_I is introduced. This coef-

ficient multiplies Xkey2 and this term will carry along in each

step as we repeat the process to eliminate the C coefficients
back to the key equation. Doing so, the key equation on
processor 1 will be transformed into an equation of the form

Bkey, Xkey t + Ckey,Xkey2 - Dkey,	
(20)

Let us now turn our attention to processors 2 through (q-1).
The system of equations on processor 2 is as shown in fig-
ure 5. The same process is used to reduce this set of equations
as was used on processor I. The only difference is that in the

keyr-2

(keyr-2 + 1)

( keyr-1 - 1)
(r - 1) th strip	 keyr-1

(keyr-1 + 1)

(keyr - 1)
keyr	 rth strip

(keyr + 1)

(keYr+1 - 1)
(r+1)thstrip	 keyr+l

(keYr+1 + 1)

(keYr+2 - 1)
keyr+2

Figure 3.—Calculation strip layout.
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8 1 C 1 	 X1	 D1

A 2 8 2 C 2	V2 	 D2

	

A3 B3 C3	 X3	 D3

A 4 B4 C4	X4 	 D4

A key 1 	 B key t 	Ckoy1	 Vkeyt	 Dkey1

A key 2-2 B key2 -2 Ckey2-2	 Ykey2-2	 Akey2-2

A key2-1 B key2-1 C key2 -1	 Vkey2-1	 Akey2-1

Xkey2

Figure 4.—Processor 1 equations.

Xkey1

	

A key t +1 B key t +l Ckey1+1	 Xkeyt+1	 Dkey1+1

A key 1 +2 B key 1 +2 C key 1 +2	 Vkey1+2	 Dkey1+2

A key 1 +3 B key 1 +3 C key 1 +3	 Vkey1+3	 Dkey1+3

A key 1 +4 B key 1 +4 C key 1 +4	 .rkeyl+4	 Dkey1+4

A key 2 	Bkey2	 Ckey2	 Xkey2	 Akey2

A key3-2 B key3-2 C key3 -2	 Xkey3-2	 Akey3-2

A key3-1 B key3-1 C key3 -1	 Xkey3-1	 Akey3-1

Xkey3

Figure 5.—Processor 2 equations.

first equation the Akeyl+t 
coefficient is not zero. Therefore, as

we reduce the equations forward toward equation key 2 , a term

gets carried along that multiplies Xkeyl Hence, when the

operations are completed on processor 2, the key equation on
that processor will be of the form

M21
A key2X key 1 + Bkey 2Xkey2 + Ckey2Xkey3 — Dkey2	 ( )

In general, for the ith processor, 2 _< i <_ (q-1), the reduced
key equation will be of the form

AkeyXkeyi-1 + BkeyXkey j + CkeyXkeyi+t — D key i (
22)

The system of equations on the last processor is as shown in
figure 6. Notice that when we begin to perform the backward
reduction (i.e., multiply the last equation by C,,_ t B„ -t and
subtract the result from the second-last equation), the C,1_1
coefficient is eliminated. Hence, the reduced key equation on
this processor is of the form

AkeygXkeyq_1 + Bkey gX key q = D key q	
(23)

Equations (20) through (23) form a bloc k-tridiagonal system,
whose solution is the solution to equation (19) at the key
points, keyi, 1 _< i <_ q. This is a system of order q and,
because it is usually a very small system (q is usually a small
number), it can be solved on a single processor by using stan-
dard serial algorithms. However, if q were large, the system
could be solved in parallel by applying the same techniques
that we applied to equation (19). After the solution is obtained
at the key points, these values are sent back to the appropriate
processors.

Now if the solution of equation (19) were required at only a
few points, and those points were included as key points, we
would be done. We would have the solution for equation (19)
at the points desired, and we would not be required to perform
a back substitution to obtain the remaining portion of the solu-
tion of equation (19). However, to obtain the entire solution of
equation (19), each processor, i, uses appropriate key point

results to solve for Xkey 1 +1 through Xkeyi-1 by way of back
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A keyq -1 +1 B keyq-1 +1 C keyq- 1 +1 	 Xkeyq-1+1	 Akeyq-1+1

A keyq- 1 +2 Bkeyq- 1 +2 C keyq- 1 +2	 Xkeyq-1+2 	 Akeyq-1+2
Akeyq- 1+3 Bkeyq-1+3 Ckeyq-1+3	 Xkeyq-1+3	 Akeyq-1+3

A keyq-1+4 13 keyq- 1 +4 CkeYq- 1 +4	 Xkeyq-1+4	 Akeyq-1+4

A keyq	 Bkeyq	 Ckeyq	 Xkeyq	 Akeyq

An-1	 Bn-1	 Cn-1	 Xn-1	 Dn-1

An	 Bn	 Xn	 Dn

Figure 6.—Last processor equations.

substitution. An exception is the last processor, processor q,
which solves for Xkeyq-1+1 through X,i.

The algorithm described here is both scalable and expand-
able. The work load can be designed to be well balanced by
choosing key points appropriately. For example, when a paral-
lel homogeneous system is used, all the calculation strips
generally will be chosen to be the same size. This will
approach a balanced work load among the processors. The

work load for the back-substitution phase is balanced among
all the processors, except for the last one. During the back
substitution this processor has to execute approximately double
the number of substitutions as any of the other processors.

Results and Discussion

Speedup results that were obtained from applying the parallel
algorithm to several different fluid dynamics problems are pre-
sented in this section. Two special flow fields with known
results (ref. 16) were selected for evaluating the parallel
algorithm, including the quasi-linear approach that was used in
the algorithm development. These first two applications
demonstrate the fast convergence rate of the parallel algorithm.
They also show that the speedup which was realized increases
as relative communication time decreases. Following these
demonstrations, the parallel algorithm is used to solve a driven
square cavity. This well-known problem displays the intricate,
coupled-flow relationships that are found in complicated fluid
dynamics problems.

The first problem we consider is examining the boundary
layer along a flat plate at zero pressure gradient. The govern-
ing equations are

	

U du + v du _ 1 d2u	
(24)

dx	 dy	 Re dy2

	

du + dv = 0	 (25)

dx dy

with the boundary conditions

y=0: a=v=0;	 y=^: u=U	 (26)

where u and v are the x-component and y-component of velo-
city, respectively; and U is the free-stream velocity as shown
in figure 7. As discussed in reference 16 (pp. 125 and 126), by
letting f be the normalized stream function, the governing
equations become Blasius' equation, which is

ff 11
	 2f... 

= 0	 (27)

with the boundary conditions

f(o) = f ' (0) = 0,	 f'(—) = 1	
(28)

The location of the infinity point, a sufficiently large number,
was arbitrarily chosen to be 8, as also was the solution grid of
1000 points. In only six iterations the solution is converged to
a residual of the order 10 -12 (see table 1). As shown in

ua

Figure 7.—Boundary layer along flat plate at zero incidence.
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z
u

V

N

U

Velocity
componentsTABLE I.—RESIDUAL

ERROR VERSUS NUMBER
OF ITERATIONS FOR
BOUNDARY LAYER

PROBLEM

Iteration Residual
(maximum)

error

1 0.14258x101

2 .26890

3 .28632-10-'

4 .24873x10-3

5 .16154x10-7

6 .11084x10
- 1I

d
E
C
0
ro 1.5

U

1.0

1	 2	 3	 4	 5	 6
Number of processors

Figure 8.—Calculation time versus number of proc-
essors for boundary layer problem.

2.0

Figure 9.—Flow near disk rotating in fluid at rest.

aV	 III,	 aV

	

!I+	 + lL'
ar	 r	 Oz

1	 a?^ + a ^v^ + a-^

Re 	 a;7'	 ar r	 a<. -

aw + w any _ _ l Op

	

Or	 dz	 p Oz

+	 I	 a-1ti + I at, , + a2v,,

Re	 Or 2	 r ar	 Oz 2

(30)

(31)

figure 8, going from two processors to six processors did not

give the theoretical increase of 3 in execution speed. However, all	 +
	

It	 +	 aw	 = 0
	 (32)

this result was expected. Because of the simple nature of the Or	 r	 Oz

problem the calculation time per processor was quite short,
and hence the communication time between processors was not where p is the density of the Fluid, r is the radius of the disk,

insignificant	 relative	 to	 the	 short	 calculation	 time	 per is the pressure, and u, v, and ware the radial, cirrumferen-

processor. tial, and axial velocity components, respectively. The Sparrow-

The second problem examined was flow near a disk rotating Gregg equations governing this problem (ref. 16, p. 95) are

in a	 fluid at rest.	 A diagram of the	 problem is shown in fig-
ure 9. A layer of fluid is carried by the disk owing to the 2F + H' = U	 (33)

action of viscous forces. The centrifugal forces in the layer
give rise to secondary flow that is directed radially outward.
The governing equations, as given in reference 16 (p. 93), are F2 + PH = 0	 l34)

It	
au	 _	

1 2	
+	 vi ,	 all	 =	 I	 ar

G --F"=U	
(35)

ar	 T 	 71

I d-u	 a	 a-uu
2FG+ HG' -G"=0	 (36)

Re at . 2	 ar r az 2 with boundary conditions
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F(0) = H(0) = F(—) = G(—) = 0,	 G(0) = 1	 (37)

where F, G, and H are the normalized velocity components.
The location of the infinity point was again arbitrarily chosen
to be 8, and the solution grid was chosen to be 500 points.

The algorithm converges extremely fast. In only 10 iterations
the residual is of the order 10 -13 as shown in table 11, but this
is still a relatively simple problem for checking the parallel
algorithm. However, now there is a little more substance to the
calculations per processor relative to communication than there
was for the previous test case, as reflected by figure 10. This
time, as shown in the figure, a relative calculation speedup of
more than 2 was realized in going from two processors to six
processors.

The parallel iterative algorithm was then applied to a more
complicated fluid dynamics problem, solving for steady-state
flow within a driven square cavity. The cavity, which had
three rigid wall surfaces as shown in figure 11, was filled with

TABLE II.—RESIDUAL
ERROR VERSUS NUMBER

OF ITERATIONS FOR
DISK ROTATING IN

FLUID AT REST

Iteration Residual
(maximum)

error

1 0.15019x10'
2 .52285.101
3 .23837=101
4 .10327x101
5 .39308
6 .94527x10-1
7 .47686x10-z
8 .14872x10-4
9 .78692-10-'
l0 .60396x10-13

2.5

2.0

0

U

U 1.5

1.0
1	 2	 3	 4	 5	 6

Number of processors
Figure 10.--Calculation time versus number of proc-

essors for disk rotating in fluid at rest.

u	 x-component of velocity
V	 y-component of velocity

Moving surface

Figure 11.—Driven square cavity showing boundary
conditions along with primary and secondary
vortices.

fluid. The fourth surface moved at constant velocity within its
own plane, causing the fluid within the cavity to swirl. The
defining equations are equations (1) through (3) with the
boundary conditions that the velocity components u and v are
zero everywhere except at the moving surface. At that surface
the x-component of velocity, u, is 1 and the y-component of
velocity, v, is 0. The swirling action can cause vortices to
appear, as shown in the figure. The approach for solving this
problem was similar to some other primitive variable
approaches that have been devised for the two-dimensional
driven cavity flow (ref. 17). As discussed earlier and shown in
figure 1, the pressure, the velocity components, and the equa-
tions were staggered over the finite-difference grid. The con-
vection terms were discretized in a special way to preserve the
second-order stability scheme. Because of the complicated
nature of the flows and the strong coupling within the cavity,
convergence was slow.

The driven square cavity problem was solved over a
50-by-50 finite-difference grid by using four processors in
parallel. Compared with using only a single processor to solve
the problem serially, a speedup of 2.96 was attained. This
speedup corresponds to an efficiency of 74 percent for the
four-processor simulation. Graphical outputs for the stream
function, the horizontal component of velocity, the vertical
component of velocity, and the pressure function were
obtained. Typical graphical outputs are displayed in figure 12.
The Reynolds number was 100 for the results shown in the
figure.

Looking to improve the efficiency being obtained, we deter-
mined that an increase in speedup would occur if the inverses
of the B diagonal coefficients in the forward and backward
reductions were performed in parallel to the rest of the scheme
rather than being done serially. The elements of the B coeffi-
cient are available substantially before the inverse is required.
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Figure 12.—Driven square cavity. Reynolds number, 100.

Hence, if the inverse were performed in parallel to the main
computations, it could be calculated while other portions of the
main calculation path were taking place. The inverse would
then be ready by the time it was needed in the main calcula-
tion path, provided that it could be completed fast enough.
And the calculation would be essentally "free" (no overhead),
except for the data transfer time. The price for this increased
performance is having processors dedicated to the matrix
inversion.

Concluding Remarks

A new parallel numerical scheme for solving incompressible
steady-state flow has been developed. The algorithm uses a
finite-difference approach to solving the Navier-Stokes
equations. The code is general and portable. Care was taken to

minimize the effects of machine-specific items in order to ease
porting of the code between MIMD distributed-memory
computers. Machine-specific items, such as COMMON and
vector processing, are not used in the code.

The algorithms are scalable and expandable. They may be
used with only two processors or with as many processors as
are available. The more processors that are available, the more
key points may be chosen in the block-tridiagonal system
being solved, reducing the work per processor. Work can be
balanced among the processors by the choice of key points.

Key points need not be equally spaced, although for a homo-
geneous system equal spacing is a desirable choice for
balancing the work load.

Speedup results obtained from applying the parallel algorithm
to several different fluid dynamics problems were presented
herein. Examining the boundary layer along a flat plate at zero
pressure gradient demonstrated the fast convergence rate of the
parallel algorithm. In only six iterations the solution converged

10



to a residual of the order 10 -12 . Examining the flow in the
neighborhood of a disk rotating in a fluid at rest demonstrated
that increased speedup is obtained as relative communication
time is decreased among the processors used. Following these
demonstrations, the parallel algorithm was used to solve for
steady-state flow in a driven square cavity. This well-known
problem displays the intricate, coupled-flow relationships that
are found in complicated fluid dynamics problems. By using
a 50-by-50 finite-difference solution grid and four processors
of the NASA Lewis Research Center Hypercluster, an effi-
ciency of 74 percent (a speedup of 2.96) was obtained.
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